إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
خطوة 1.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
خطوة 1.1.1
Consider the corresponding sign chart.
خطوة 1.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
خطوة 1.1.3
The minor for is the determinant with row and column deleted.
خطوة 1.1.4
Multiply element by its cofactor.
خطوة 1.1.5
The minor for is the determinant with row and column deleted.
خطوة 1.1.6
Multiply element by its cofactor.
خطوة 1.1.7
The minor for is the determinant with row and column deleted.
خطوة 1.1.8
Multiply element by its cofactor.
خطوة 1.1.9
The minor for is the determinant with row and column deleted.
خطوة 1.1.10
Multiply element by its cofactor.
خطوة 1.1.11
Add the terms together.
خطوة 1.2
اضرب في .
خطوة 1.3
اضرب في .
خطوة 1.4
اضرب في .
خطوة 1.5
احسِب قيمة .
خطوة 1.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
خطوة 1.5.1.1
Consider the corresponding sign chart.
خطوة 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
خطوة 1.5.1.3
The minor for is the determinant with row and column deleted.
خطوة 1.5.1.4
Multiply element by its cofactor.
خطوة 1.5.1.5
The minor for is the determinant with row and column deleted.
خطوة 1.5.1.6
Multiply element by its cofactor.
خطوة 1.5.1.7
The minor for is the determinant with row and column deleted.
خطوة 1.5.1.8
Multiply element by its cofactor.
خطوة 1.5.1.9
Add the terms together.
خطوة 1.5.2
اضرب في .
خطوة 1.5.3
اضرب في .
خطوة 1.5.4
احسِب قيمة .
خطوة 1.5.4.1
يمكن إيجاد محدد المصفوفة باستخدام القاعدة .
خطوة 1.5.4.2
بسّط المحدد.
خطوة 1.5.4.2.1
بسّط كل حد.
خطوة 1.5.4.2.1.1
اضرب في .
خطوة 1.5.4.2.1.2
اضرب في .
خطوة 1.5.4.2.2
أضف و.
خطوة 1.5.5
بسّط المحدد.
خطوة 1.5.5.1
اضرب في .
خطوة 1.5.5.2
أضف و.
خطوة 1.5.5.3
أضف و.
خطوة 1.6
بسّط المحدد.
خطوة 1.6.1
اضرب في .
خطوة 1.6.2
أضف و.
خطوة 1.6.3
أضف و.
خطوة 1.6.4
أضف و.
خطوة 2
Since the determinant is non-zero, the inverse exists.
خطوة 3
Set up a matrix where the left half is the original matrix and the right half is its identity matrix.
خطوة 4
خطوة 4.1
Swap with to put a nonzero entry at .
خطوة 4.2
Swap with to put a nonzero entry at .
خطوة 4.3
Multiply each element of by to make the entry at a .
خطوة 4.3.1
Multiply each element of by to make the entry at a .
خطوة 4.3.2
بسّط .
خطوة 4.4
Swap with to put a nonzero entry at .
خطوة 4.5
Multiply each element of by to make the entry at a .
خطوة 4.5.1
Multiply each element of by to make the entry at a .
خطوة 4.5.2
بسّط .
خطوة 4.6
Multiply each element of by to make the entry at a .
خطوة 4.6.1
Multiply each element of by to make the entry at a .
خطوة 4.6.2
بسّط .
خطوة 5
The right half of the reduced row echelon form is the inverse.